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Abstract. Motivated by a recent paper, in which the authors studied Re-nnd {1, 3}-inverse, {1, 4}-inverse
and {1, 3, 4}-inverse of a square matrix, in this paper, we establish some equivalent conditions for the ex-
istence of Re-nnd {1, 2, 3}-inverse, {1, 2, 4}-inverse and {1, 3, 4}-inverse. Furthermore, some expressions of
these generalized inverses are presented.

1. Introduction

Let Cm×n denote the set of all m × n matrices over the complex field C, Cm
H denote the set of all m × m

Hermitian matrices. For A ∈ Cm×n, its rank and conjugate transpose will be denoted by r(A) and A∗

respectively. We write A > 0 (or A > 0) if A is positive semidefinite matrix (or positive definite matrix). For
Hermitian matrix A, its positive and negative index of inertia are symbolled by i+(A) and i−(A) respectively.

For a matrix A ∈ Cm×n, the Moore-Penrose inverse A† is defined to be the unique solution of the four
Penrose equations [1]

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Let ∅ , η ⊆ {1, 2, 3, 4}. Then Aη denotes the set of all matrices X satisfy (i) for all i ∈ η. Any matrix X ∈ Aη
is called an η-inverse of A. One usually denotes any {1, 2, 3}-inverse of A as A(1,2,3), any {1, 2, 4}-inverse
of A is denoted by A(1,2,4), and any {1, 3, 4}-inverse of A is denoted by A(1,3,4). Let A(i, j,··· ,k)

re be the Re-nnd
{i, j, · · · , k}-inverse of A. For convenience, we denote EA = I − AA† and FA = I − A†A.

For a matrix A ∈ Cn×n, the group inverse, denoted by A#, is the unique matrix X satisfying

AXA = A, XAX = X, AX = XA.

Recently, some authors studied several special generalized inverses, such as Hermitian generalized
inverses, positive semidefinite generalized inverses and Re-nnd generalized inverses of a square matrix.
For example, Tian [2] presented a general expression for each Hermitian generalized inverse of a Hermitian
matrix; Liu and Yang [3] investigated Hermitian {1, 3}-inverse and {1, 4}-inverse; newly, some in-depth
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researches are done on Hermitian generalized inverses and positive semidefinite generalized inverses by
Liu [4]; Nikolov and Cvetković-Ilić [5] studied Re-nnd {1, 3}-inverse, {1, 4}-inverse and {1, 3, 4}-inverse, also
positive semidefinite {1, 3}-inverse and {1, 4}-inverse. For Re-nnd {1}-inverse, it can be regarded as the
Re-nnd solution to equation AXA = A, which has been considered by Cvetković-Ilić [6].

Motivated by the above work, in this article, we establish some conditions for the existences of Re-nnd
{1, 2, 3}-inverse, {1, 2, 4}-inverse and {1, 3, 4}-inverse, moreover, expressions of these Re-nnd generalized
inverses are given.

Before giving the main results, we first introduce several lemmas as follows.

Lemma 1.1. [7] Let A ∈ Cm
H, B ∈ Cm×n and C ∈ Cp×m be given. Then

min
X∈Cn×m

i±[A − BXC − (BXC)∗] = r
(

A B C∗
)

+ max {i±(M1) − r(N1), i±(M2) − r(N2)} ,

where

M1 =

(
A B
B∗ 0

)
, M2 =

(
A C∗

C 0

)
, N1 =

(
A B C∗

B∗ 0 0

)
, N2 =

(
A B C∗

C 0 0

)
.

Lemma 1.2. [7] Let A ∈ Cm
H, B ∈ Cm×n, and denote M =

(
A B
B∗ 0

)
. Then

i±(M) = r(B) + i±(EBAEB).

Lemma 1.3. [8] Let A ∈ Cm×n. Then

A(1,2,3) = A† + FAV1AA†,
A(1,2,4) = A† + A†AV2EA,

A(1,3,4) = A† + FAV3EA,

where Vi (i = 1, 2, 3) are arbitrary matrices with proper sizes.

Lemma 1.4. [9] Let A ∈ Cm×p and B ∈ Cq×m be given, and define M =
(

EA FB

)
, G =

(
A B∗

)
and

H =
(

B∗ A
)∗

. Then the general solution of AXB + (AXB)∗ > 0 can be written in the parametric form

X = A†EMUU∗EMB† +
(

Ip 0
)

FGWEH

(
Iq
0

)
−

(
0 Ip

)
EHW∗FG

(
0
Iq

)
+ FAW1 + W2EB,

where U ∈ Cm×m, W ∈ C(p+q)×(p+q) and W1,W2 ∈ Cp×q are arbitrary.

Lemma 1.5. [8] Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then

r
(

A B
)

= r(A) + r(EAB),

r
(

A
C

)
= r(A) + r(CFA).

Lemma 1.6. [5] Let A ∈ Cn×n. Then A(1,3)
re exists if and only if (A†)2A (or A2A†,A∗A2) is Re-nnd; A(1,4)

re exists if and
only if A(A†)2 (or A†A2,A2A∗) is Re-nnd.

Lemma 1.7. [10] Let A,C ∈ Cn×m, and B,D ∈ Cm×n, such that both AX = C and XB = D have a Re-nnd solution. If
the pair of equations have a common solution (i.e. AD = CB), then there exists a common Re-nnd solution if and only if

r
(

A C
B∗ −D∗

)
= r

(
A CA∗

B∗ −D∗A∗

)
= r

(
A CB
B∗ −D∗B

)
.
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2. Re-nnd Generalized Inverses

In this section, our purpose is to present some conditions for Re-nnd {1, 2, 3}-inverse, {1, 2, 4}-inverse
and {1, 3, 4}-inverse existing, and then establish several expressions for these Re-nnd generalized inverses.

Theorem 2.1. Let A ∈ Cm×m. Then the following statements are equivalent:
(i) A(1,2,3)

re exists;
(ii) (A†)2A is Re-nnd and r(A) = r(A2);
(iii) A2A† is Re-nnd and r(A) = r(A2);
(iv) A∗A2 is Re-nnd and r(A) = r(A2);
(v) A#AA† is Re-nnd and r(A) = r(A2).
In this case, then

X = A#AA† +
(

FA 0
)

FGWEH

(
AA†

0

)
−

(
0 FA

)
EHW∗FG

(
0

AA†

)
(1)

is a Re-nnd {1, 2, 3}-inverse of A, where G =
(

FA AA†
)
, H =

(
AA† FA

)∗
, and W ∈ C2m×2m is arbitrary.

Proof. Since A(1,2,3) = A† + FAVAA†, then A(1,2,3)
re exists if and only if there exists some V such that A(1,2,3) is

Re-nnd, i.e.,

min
V

i−
(
A(1,2,3) + (A(1,2,3))∗

)
= min

V
i−

(
A† + (A†)∗ + FAVAA† + (FAVAA†)∗

)
= 0.

By Lemma 1.1, we have

min
V

i−
(
A† + (A†)∗ + FAVAA† + (FAVAA†)∗

)
= min

V
i−

(
A† + (A†)∗ − (−FAVAA†) − (−FAVAA†)∗

)
= r

(
A† + (A†)∗ −FA AA†

)
+ max

{
i−

(
A† + (A†)∗ −FA
−FA 0

)
− r

(
A† + (A†)∗ −FA AA†

−FA 0 0

)
,

i−

(
A† + (A†)∗ AA†

AA† 0

)
− r

(
A† + (A†)∗ −FA AA†

AA† 0 0

)}
.

On account of Lemma 1.2 and Lemma 1.5, we get

r
(

A† + (A†)∗ −FA AA†
)

= r
(

A† Im AA†
)

= m,

i−

(
A† + (A†)∗ −FA
−FA 0

)
= r(−FA) + i−[A†A(A† + (A†)∗)A†A]

= r(FA) + i−[(A†)2A + ((A†)2A)∗],

i−

(
A† + (A†)∗ AA†

AA† 0

)
= r(AA†) + i−[EA(A† + (A†)∗)EA] = r(A),

r
(

A† + (A†)∗ −FA AA†

−FA 0 0

)
= r

(
A† FA AA†

FA 0 0

)
= r(FA) + r

(
(A†)2A FA AA†

)
= 2r(FA) + r

(
(A†)2A A†A2A†

)
= 2r(FA) + r

(
A(A†)2A A2A†

)
= 2r(FA) + r

(
A(A†)2A A2

)
,



X. Liu, R. Fang / Filomat 29:5 (2015), 1121–1125 1124

r
(

A† + (A†)∗ −FA AA†

AA† 0 0

)
= r

(
0 FA AA†

AA† 0 0

)
= r(AA†) + r(FA) + r(A†A2A†)
= m + r(A2).

Hence,

min
V

i−
(
A† + (A†)∗ + FAVAA† + (FAVAA†)∗

)
= m + max

{
i−[(A†)2A + ((A†)2A)∗] − r(FA) − r

(
A(A†)2A A2

)
, r(A) −m − r(A2)

}
= max

{
i−[(A†)2A + ((A†)2A)∗] + r(A) − r

(
A(A†)2A A2

)
, r(A) − r(A2)

}
. (2)

Letting the right hand side of (2) be zero produces

i−[(A†)2A + ((A†)2A)∗] = 0, r(A) = r
(

A(A†)2A A2
)
, r(A) = r(A2)

which are equivalent to (A†)2A is Re-nnd and r(A) = r(A2). So (i) and (ii) are equivalent. And the equivalence
of (ii), (iii) and (iv) are followed by Theorem 2.1 in [5].

Next, we show that (iii) and (v) are also equivalent. If A2A† is Re-nnd and r(A) = r(A2), we can deduce

A2A† + (A2A†)∗ > 0

⇒ A#
(
A2A† + (A2A†)∗

)
(A#)∗ > 0

⇒ A#AA† + (A#AA†)∗ > 0,

which means that A#AA† is Re-nnd.
Similarly, we can prove (v)⇒ (iii).

If A(1,2,3)
re exists, suppose X = A#AA† + FAVAA†. It is easy to verify that X is a {1, 2, 3}-inverse of A.

Although it is very difficult to give a general expression of V such that A#AA† + FAVAA† is Re-nnd,
specially, we can choose some V satisfying FAVAA† is Re-nnd, i.e.,

FAVAA† + (FAVAA†)∗ > 0. (3)

In view of Lemma 1.4, the general solution of (3) can be written in the parametric form

V = FAEMUU∗EMAA† +
(

Im 0
)

FGWEH

(
Im
0

)
−

(
0 Im

)
EHW∗FG

(
0
Im

)
+ A†AW1 + W2EA,

where M =
(

A†A EA

)
, G =

(
FA AA†

)
, H =

(
AA† FA

)∗
, and U,W,W1,W2 are arbitrary.

In addition, it follows from Lemma 1.5 and r(A2) = r(A) that

r(M) = r
(

A†A EA

)
= r

(
A∗ FA∗

)
= r

(
A∗ Im
0 A∗

)
− r(A) = m,

which means that EM = 0.
So, (1) can be obtained immediately.

In an analogous way, the following result can be deduced.

Theorem 2.2. Let A ∈ Cm×m. Then the following statements are equivalent:
(i) A(1,2,4)

re exists;
(ii) A(A†)2 is Re-nnd and r(A) = r(A2);
(iii) A†A2 is Re-nnd and r(A) = r(A2);
(iv) A2A∗ is Re-nnd and r(A) = r(A2);
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(v) A†AA# is Re-nnd and r(A) = r(A2).
In this case, then

X = A†AA# +
(

A†A 0
)

FGWEH

(
EA
0

)
−

(
0 A†A

)
EHW∗FG

(
0

EA

)
is a Re-nnd {1, 2, 4}-inverse of A, where G =

(
A†A EA

)
, H =

(
EA A†A

)∗
, and W ∈ C2m×2m is arbitrary.

In [5], the authors presented some conditions for the existence for A(1,3,4)
re , next, we give some new

conditions.

Theorem 2.3. Let A ∈ Cm×m. Then the following statements are equivalent:
(i) A(1,3,4)

re exists;
(ii) A(1,3)

re , A(1,4)
re exist, and

r
(

A∗A A∗

AA∗ −A

)
= r(A) + r(A∗A + A2) = r(A) + r(AA∗ + A2). (4)

Proof. Since the A(1,3,4)
re can be regarded as the common Re-nnd solution to A∗AX = A∗ and XAA∗ = A∗. By

Lemma 1.7, we get that statement (i) is equivalent to A(1,3)
re , A(1,4)

re exist, and

r
(

A∗A A∗

AA∗ −A

)
= r

(
A∗A (A∗)2A
AA∗ −AA∗A

)
= r

(
A∗A A∗AA∗

AA∗ −A2A∗

)
.

Moreover,

r
(

A∗A (A∗)2A
AA∗ −AA∗A

)
= r

(
A∗A (A∗)2

AA∗ −AA∗

)
= r

(
A∗A (A∗)2

A∗ −A∗

)
= r(A∗) + r[A∗A + (A∗)2] = r(A) + r(A∗A + A2),

r
(

A∗A A∗AA∗

AA∗ −A2A∗

)
= r

(
A∗A A∗A
AA∗ −A2

)
= r

(
A A

AA∗ −A2

)
= r(A) + r(AA∗ + A2).

According to the above analyses, (4) is valid. The proof is complete.
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